
Case Study into Clinical Advantage of IVTM Fever Management using TGXP over Surface Cooling with Covid19 Patient

HOSPITAL SIZE

348 beds

PATIENT HISTORY		
Age	67	
Weight	94kg / 207lbs	
Gender	Male	
RR	30's	
O ₂ Sat	80%	
Реер	12	
FiO ₂	60%	

FEVER MANAGEMENT CONSIDERATIONS FOR COVID-19 PATIENTS

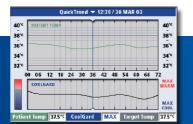
ZOLL Temperature Management System Utilized	Thermogard XP® (TGXP)
ZOLL IVTM Catheter Utilized	Quattro® Catheter
Starting Temperature	40.2°C (104.5°F)
Target Temperature	36.5°C (97.7°F)
Time to Target Temperature	<60 minutes (See Figure 1)

IVTM Performance Summary

Patient presented with high fever and respiratory distress syndrome related to COVID-19. Poor fever control is associated with increased mortality in COVID-19 patients.¹

Surface cooling was initiated with no change in patient's temperature and continued deterioration in the patient's overall condition.

While preparing to prone the patient a Quattro® catheter was placed. Patient's hemodynamics stabilized once the **fever was controlled and reduced to 36.5°C – eliminating the need for proning.** Respiratory rate improved to 22, oxygen saturation to 97%, peep to 7, FiO2 to 30%.


Patient was cooled quickly and reached target temperature in less than an hour. IVTM is a precise and efficient way to control fever.²

IVTM System Thermogard XP®

Track patient & system data, transferring digitally to patients file post treatment.

Precise, fast and effective control of patient temperature, reducing clinical time & costs while achieving better results compared to surface cooling. 2-7

Available from

40 38 36 34 32 Patient Temp 33.1 C Therm gard MAX Target Temp 36.0 C

Call 01782 637009 for system details & ordering

¹Tharakan, et al., Critical Care. 2020;24:298

²Hoedemaekers CW, et al. Critical Care. 2007;11:R91.

³Mayer SA, et al. *Critical Care Medicine*. 2004;(3)212:2508-2515

⁴Diringer MN, et al. Critical Care Medicine. 2004;(32)2:559-564.

⁵Heard KJ, et al. *Resuscitation*. 2010;81:9-14.

[®]Horn CM, et al. *Journal of Neurointerventional Surgery.* 2014 Mar;6(2):91-95. ⁷Knapik P, et al. *Kardiologia Polska*. 2011;69(11):1157-1163.

